preprocessing.SBM.sbm_isolation

preprocessing/SBM/sbm_isolation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np
import torch
import pickle
import time
from itertools import combinations
from scipy.special import comb
from multiprocessing import Pool


def schuffle(W, x):
    n = W.shape[0]
    idx=np.random.permutation(n)
    W_new=W[idx,:][:,idx]
    x_new=x[idx]
    return W_new , x_new


def block_model_adj(com, p_r, q, r_p, q_p):
    n=len(com)
    W=np.zeros((n, n), dtype=np.int64)
    for i in range(n):
        for j in range(i+1,n):
            if com[i] == com[j]:
                prob = p_r[com[i]]
            else:
                if (com[i] not in r_p) and (com[j] not in r_p):
                    prob = q
                else:
                    prob = q_p
            if np.random.binomial(1, prob) == 1:
                W[i,j] = 1
                W[j,i] = 1     
    return W


def block_model(sel_r, clust_size_min, clust_size_max, p_r, q, r_p, q_p):  
    com = []
    for r in sel_r:
        clust_size = np.random.randint(clust_size_min, clust_size_max, size=1)[0]
        com.append(np.repeat(r, clust_size, axis=0))
    com = np.concatenate(com)  
    W = block_model_adj(com, p_r, q, r_p, q_p)  
    return W, com


def adj_to_edge_list(W):
    n = W.shape[0]
    e = int(np.sum(W))
    edge_index = np.zeros((2, e), dtype=np.int64)
    counter = 0
    for i in range(n):
        for j in range(n):
            if W[i,j] == 1:
                edge_index[0, counter] = i
                edge_index[1, counter] = j
                counter += 1
    assert counter == e
    return edge_index
    
    
SMB_ISOLATION_CONFIG = {
    'r': 5,
    's': 3,
    'p_r': np.array([0.9, 0.8, 0.7, 0.6, 0.5]),
    'size_min': 10,
    'size_max': 30,
    'q': 0.3,
    'q_p': 0.1,
    'ntypes': 8,
}


SELECTION_DICT = dict(zip([frozenset(sel_r) for sel_r in combinations(range(SMB_ISOLATION_CONFIG['r']), SMB_ISOLATION_CONFIG['s'])], range(comb(SMB_ISOLATION_CONFIG['r'], SMB_ISOLATION_CONFIG['s'], exact=True))))


def encode_selection(sel_r):
    return SELECTION_DICT[frozenset(sel_r)]


class SBMIsolationGraph():
    def __init__(self, config=SMB_ISOLATION_CONFIG):
        # parameters
        self.r  = SMB_ISOLATION_CONFIG['r']
        self.s  = SMB_ISOLATION_CONFIG['s']
        assert self.s > 0 and self.s < self.r
        self.p_r = SMB_ISOLATION_CONFIG['p_r']
        assert len(self.p_r) == self.r
        self.size_min = SMB_ISOLATION_CONFIG['size_min']
        self.size_max = SMB_ISOLATION_CONFIG['size_max']
        self.q = SMB_ISOLATION_CONFIG['q']
        self.q_p = SMB_ISOLATION_CONFIG['q_p']
        self.ntypes = SMB_ISOLATION_CONFIG['ntypes']
        # data
        self.x = None
        self.y = None
        self.edge_index = None
        self.domain_id = None
        # generate
        self.generate()
        
    def validate(self):
        assert isinstance(self.x, torch.Tensor)
        assert isinstance(self.y, torch.Tensor)
        assert isinstance(self.edge_index, torch.Tensor)
        assert isinstance(self.domain_id, np.ndarray)
        
        assert self.x.ndim == 1
        assert self.y.ndim == 0
        assert self.edge_index.ndim == 2 and self.edge_index.size(0) == 2
        assert self.domain_id.ndim == 0
        
        assert self.x.dtype == torch.int64
        assert self.y.dtype == torch.int64
        assert self.edge_index.dtype == torch.int64
        assert self.domain_id.dtype == np.int64        
        
    def get(self):
        self.validate()
        graph_data = {
            'x': self.x,
            'y': self.y,
            'edge_index': self.edge_index,
        }
        return graph_data, self.domain_id
    
    def stat(self):
        self.validate()
        stat = {
            '# of nodes': self.x.size(0),
            '# of edges': self.edge_index.size(1)//2,
            'avg degree': self.edge_index.size(1)/self.x.size(0)/2,
        }
        return stat
    
    def generate(self):
        # select communities
        sel_r = np.random.choice(self.r, self.s, replace=False)
        domain_id = encode_selection(sel_r)
        
        # isolate some communities
        y = np.random.randint(self.s + 1, size=1)[0]
        r_p = np.random.choice(sel_r, y, replace=False)
        
        # generate adj and com list
        W, com = block_model(sel_r, self.size_min, self.size_max, self.p_r, self.q, r_p, self.q_p)
        
        # generate iid random node features 
        x = np.random.randint(self.ntypes, size=W.shape[0])
        
        # shuffle
        W, x = schuffle(W, x)
        
        # conversion
        self.x = torch.from_numpy(x).long()
        self.y = torch.tensor(y).long()
        self.edge_index = torch.from_numpy(adj_to_edge_list(W)).long()
        self.domain_id = np.array(domain_id, dtype=np.int64)

        
def generate_func(i):
    return SBMIsolationGraph()
    
        
def generate_sbm_graph_list(n_samples, n_processes=1):
    np.random.seed(0)
    
    start_time = time.time()

    sbm_graph_list = []

    with Pool(processes=n_processes) as pool:
        for i, sbmg in enumerate(pool.imap_unordered(generate_func, range(n_samples))):
            sbm_graph_list.append(sbmg)
            print(f'Progress: {i/n_samples*100:.2f}%', end='\r', flush=True)
    print(' '*50, end='\r')

    print(f'Total generation time: {time.time() - start_time:.2f} secs.')
    
    return sbm_graph_list