gds.datasets.ogbmolpcba_dataset

gds/datasets/ogbmolpcba_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os

import numpy as np
import torch
import torch_geometric
from ogb.graphproppred import PygGraphPropPredDataset, Evaluator
from torch_geometric.data import download_url, extract_zip
from torch_geometric.data.dataloader import Collater as PyGCollater

from gds.datasets.gds_dataset import GDSDataset
from torch_geometric.utils import to_dense_adj
import torch.nn.functional as F


class OGBPCBADataset(GDSDataset):
    """
    The OGB-molpcba dataset.
    This dataset is directly adopted from Open Graph Benchmark, and originally curated by MoleculeNet.

    Supported `split_scheme`:
        - 'official' or 'scaffold', which are equivalent

    Input (x):
        Molecular graphs represented as Pytorch Geometric data objects

    Label (y):
        y represents 128-class binary labels.

    Metadata:
        - scaffold
            Each molecule is annotated with the scaffold ID that the molecule is assigned to.

    Website:
        https://ogb.stanford.edu/docs/graphprop/#ogbg-mol

    Original publication:
        @article{hu2020ogb,
            title={Open Graph Benchmark: Datasets for Machine Learning on Graphs},
            author={W. {Hu}, M. {Fey}, M. {Zitnik}, Y. {Dong}, H. {Ren}, B. {Liu}, M. {Catasta}, J. {Leskovec}},
            journal={arXiv preprint arXiv:2005.00687},
            year={2020}
        }

        @article{wu2018moleculenet,
            title={MoleculeNet: a benchmark for molecular machine learning},
            author={Z. {Wu}, B. {Ramsundar}, E. V {Feinberg}, J. {Gomes}, C. {Geniesse}, A. S {Pappu}, K. {Leswing}, V. {Pande}},
            journal={Chemical science},
            volume={9},
            number={2},
            pages={513--530},
            year={2018},
            publisher={Royal Society of Chemistry}
        }

    License:
        This dataset is distributed under the MIT license.
        https://github.com/snap-stanford/ogb/blob/master/LICENSE
    """

    _dataset_name = 'ogb-molpcba'
    _versions_dict = {
        '1.0': {
            'download_url': None,
            'compressed_size': None}}

    def __init__(self, version=None, root_dir='data', download=False, split_scheme='official', random_split=False,
        subgraph=False, **dataset_kwargs):
        self._version = version
        if version is not None:
            raise ValueError('Versioning for OGB-MolPCBA is handled through the OGB package. Please set version=none.')
        # internally call ogb package
        self.ogb_dataset = PygGraphPropPredDataset(name='ogbg-molpcba', root=root_dir)

        # set variables
        self._data_dir = self.ogb_dataset.root
        if split_scheme == 'official':
            split_scheme = 'scaffold'
        self._split_scheme = split_scheme
        self._y_type = 'float'  # although the task is binary classification, the prediction target contains nan value, thus we need float
        self._y_size = self.ogb_dataset.num_tasks
        self._n_classes = self.ogb_dataset.__num_classes__


        self._split_array = torch.zeros(len(self.ogb_dataset)).long()
        split_idx = self.ogb_dataset.get_idx_split()

        np.random.seed(0)
        dataset_size = len(self.ogb_dataset)
        if random_split:
            random_index = np.random.permutation(dataset_size)
            train_split_idx = random_index[:len(split_idx['train'])]
            val_split_idx = random_index[len(split_idx['train']):len(split_idx['train']) + len(split_idx['valid'])]
            test_split_idx = random_index[len(split_idx['train']) + len(split_idx['valid']):]
        else:
            train_split_idx = split_idx['train']
            val_split_idx = split_idx['valid']
            test_split_idx = split_idx['test']

        self._split_array[train_split_idx] = 0
        self._split_array[val_split_idx] = 1
        self._split_array[test_split_idx] = 2


        self._y_array = self.ogb_dataset.data.y
        self._metadata_fields = ['scaffold']

        metadata_file_path = os.path.join(self.ogb_dataset.root, 'raw', 'OGB-MolPCBA_group.npy')
        if not os.path.exists(metadata_file_path):
            metadata_zip_file_path = download_url(
                'https://www.dropbox.com/s/jjpr6tw34llxbpw/OGB-MolPCBA_group.zip?dl=1', self.ogb_dataset.raw_dir)
            extract_zip(metadata_zip_file_path, self.ogb_dataset.raw_dir)
            os.unlink(metadata_zip_file_path)
        self._metadata_array = torch.from_numpy(np.load(metadata_file_path)).reshape(-1, 1).long()

        if dataset_kwargs['model'] == '3wlgnn':
            self._collate = self.collate_dense
        else:
            if torch_geometric.__version__ >= '1.7.0':
                self._collate = PyGCollater(follow_batch=[], exclude_keys=[])
            else:
                self._collate = PyGCollater(follow_batch=[])

        self._metric = Evaluator('ogbg-molpcba')


        # GSN
        self.subgraph = subgraph
        if self.subgraph:
            self.id_type = dataset_kwargs['gsn_id_type']
            self.k = dataset_kwargs['gsn_k']
            from gds.datasets.gsn.gsn_data_prep import GSN
            subgraph = GSN(dataset_name='ogbg-molhiv', dataset_group='ogb', induced=True, id_type=self.id_type,
                           k=self.k)
            self.graphs_ptg, self.encoder_ids, self.d_id, self.d_degree = subgraph.preprocess(self.ogb_dataset.root)

            if self.graphs_ptg[0].x.dim() == 1:
                self.num_features = 1
            else:
                self.num_features = self.graphs_ptg[0].num_features

            if hasattr(self.graphs_ptg[0], 'edge_features'):
                if self.graphs_ptg[0].edge_features.dim() == 1:
                    self.num_edge_features = 1
                else:
                    self.num_edge_features = self.graphs_ptg[0].edge_features.shape[1]
            else:
                self.num_edge_features = None

            self.d_in_node_encoder = [self.num_features]
            self.d_in_edge_encoder = [self.num_edge_features]

        super().__init__(root_dir, download, split_scheme)

    def get_input(self, idx):
        if self.subgraph:
            return self.graphs_ptg[int(idx)]
        else:
            return self.ogb_dataset[int(idx)]

    def eval(self, y_pred, y_true, metadata, prediction_fn=None):
        """
        Computes all evaluation metrics.
        Args:
            - y_pred (FloatTensor): Binary logits from a model
            - y_true (LongTensor): Ground-truth labels
            - metadata (Tensor): Metadata
            - prediction_fn (function): A function that turns y_pred into predicted labels.
                                        Only None is supported because OGB Evaluators accept binary logits
        Output:
            - results (dictionary): Dictionary of evaluation metrics
            - results_str (str): String summarizing the evaluation metrics
        """
        assert prediction_fn is None, "OGBPCBADataset.eval() does not support prediction_fn. Only binary logits accepted"
        input_dict = {"y_true": y_true, "y_pred": y_pred}
        results = self._metric.eval(input_dict)

        return results, f"Average precision: {results['ap']:.3f}\n"

    # prepare dense tensors for GNNs using them; such as RingGNN, 3WLGNN
    def collate_dense(self, samples):
        def _sym_normalize_adj(adjacency):
            deg = torch.sum(adjacency, dim=0)  # .squeeze()
            deg_inv = torch.where(deg > 0, 1. / torch.sqrt(deg), torch.zeros(deg.size()))
            deg_inv = torch.diag(deg_inv)
            return torch.mm(deg_inv, torch.mm(adjacency, deg_inv))

        # The input samples is a list of pairs (graph, label).
        node_feat_space = torch.tensor([119, 4, 12, 12, 10, 6, 6, 2, 2])
        edge_feat_space = torch.tensor([5, 6, 2])

        graph_list, y_list, metadata_list = map(list, zip(*samples))
        # multi-task y, use torch.stack instead of torch.tensor
        y, metadata = torch.stack(y_list), torch.stack(metadata_list)

        feat = []
        for graph in graph_list:
            adj = _sym_normalize_adj(to_dense_adj(graph.edge_index, max_num_nodes=graph.x.size(0)).squeeze())
            zero_adj = torch.zeros_like(adj)
            in_dim = node_feat_space.sum() + edge_feat_space.sum()

            # use node feats to prepare adj
            adj_feat = torch.stack([zero_adj for _ in range(in_dim)])
            adj_feat = torch.cat([adj.unsqueeze(0), adj_feat], dim=0)

            def convert(feature, space):
                out = []
                for i, label in enumerate(feature):
                    out.append(F.one_hot(label, space[i]))
                return torch.cat(out)

            for node, node_feat in enumerate(graph.x):
                adj_feat[1:1 + node_feat_space.sum(), node, node] = convert(node_feat, node_feat_space)
            for edge in range(graph.edge_index.shape[1]):
                target, source = graph.edge_index[0][edge], graph.edge_index[1][edge]
                edge_feat = graph.edge_attr[edge]
                adj_feat[1 + node_feat_space.sum():, target, source] = convert(edge_feat, edge_feat_space)

            feat.append(adj_feat)

        feat = torch.stack(feat)
        return feat, y, metadata