experiments.train

experiments/train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from tqdm import tqdm
import torch
from utils import save_model, save_pred, get_pred_prefix, get_model_prefix, detach_and_clone, collate_list


def run_epoch(algorithm, dataset, general_logger, epoch, config, train):
    if dataset['verbose']:
        general_logger.write(f"\n{dataset['name']}:\n")

    if train:
        algorithm.train()
        torch.set_grad_enabled(True)
    else:
        algorithm.eval()
        torch.set_grad_enabled(False)

    # Not preallocating memory is slower
    # but makes it easier to handle different types of data loaders
    # (which might not return exactly the same number of examples per epoch)
    epoch_y_true = []
    epoch_y_pred = []
    epoch_metadata = []

    # Using enumerate(iterator) can sometimes leak memory in some environments (!)
    # so we manually increment batch_idx
    batch_idx = 0
    iterator = tqdm(dataset['loader']) if config.progress_bar else dataset['loader']

    for batch in iterator:
        if train:
            batch_results = algorithm.update(batch)
        else:
            batch_results = algorithm.evaluate(batch)
       

        # These tensors are already detached, but we need to clone them again
        # Otherwise they don't get garbage collected properly in some versions
        # The extra detach is just for safety
        # (they should already be detached in batch_results)
        epoch_y_true.append(detach_and_clone(batch_results['y_true']))
        y_pred = detach_and_clone(batch_results['y_pred'])
        if config.process_outputs_function is not None:
            y_pred = process_outputs_functions[config.process_outputs_function](y_pred)
        epoch_y_pred.append(y_pred)
        epoch_metadata.append(detach_and_clone(batch_results['metadata']))

        if train and (batch_idx + 1) % config.log_every == 0:
            log_results(algorithm, dataset, general_logger, epoch, batch_idx)

        batch_idx += 1

    epoch_y_pred = collate_list(epoch_y_pred)
    epoch_y_true = collate_list(epoch_y_true)
    epoch_metadata = collate_list(epoch_metadata)

    results, results_str = dataset['dataset'].eval(
        epoch_y_pred,
        epoch_y_true,
        epoch_metadata)
 
    if config.scheduler_metric_split == dataset['split']:
        algorithm.step_schedulers(
            is_epoch=True,
            metrics=results,
            log_access=(not train))

    # log after updating the scheduler in case it needs to access the internal logs
    log_results(algorithm, dataset, general_logger, epoch, batch_idx)

    results['epoch'] = epoch
    dataset['eval_logger'].log(results)
    if dataset['verbose']:
        general_logger.write('Epoch eval:\n')
        general_logger.write(results_str)

    return results, epoch_y_pred


def train(algorithm, datasets, general_logger, result_logger, config, epoch_offset, best_val_metric):

    for epoch in range(epoch_offset, config.n_epochs):
        general_logger.write('\nEpoch [%d]:\n' % epoch)

        # First run training
        run_epoch(algorithm, datasets['train'], general_logger, epoch, config, train=True)

        # Then run val
        val_results, y_pred = run_epoch(algorithm, datasets['val'], general_logger, epoch, config, train=False)
        curr_val_metric = val_results[config.val_metric]
        general_logger.write(f'Validation {config.val_metric}: {curr_val_metric:.3f}\n')
       

        if best_val_metric is None:
            is_best = True
        else:
            if config.val_metric_decreasing:
                is_best = curr_val_metric < best_val_metric
            else:
                is_best = curr_val_metric > best_val_metric
        if is_best:
            best_val_metric = curr_val_metric
            general_logger.write(f'Epoch {epoch} has the best validation performance so far.\n')



        save_model_if_needed(algorithm, datasets['val'], epoch, config, is_best, best_val_metric)
        save_pred_if_needed(y_pred, datasets['val'], epoch, config, is_best)

        # Then run everything else
        if config.evaluate_all_splits:
            additional_splits = [split for split in datasets.keys() if split not in ['train', 'val']]
        else:
            additional_splits = config.eval_splits
        for split in additional_splits:
            _, y_pred = run_epoch(algorithm, datasets[split], general_logger, epoch, config, train=False)
            save_pred_if_needed(y_pred, datasets[split], epoch, config, is_best)

        general_logger.write('\n')



def evaluate(algorithm, datasets, epoch, general_logger, result_logger, config, is_best):
    algorithm.eval()
    torch.set_grad_enabled(False)
    for split, dataset in datasets.items():
        if (not config.evaluate_all_splits) and (split not in config.eval_splits):
            continue
        epoch_y_true = []
        epoch_y_pred = []
        epoch_metadata = []
        iterator = tqdm(dataset['loader']) if config.progress_bar else dataset['loader']
        for batch in iterator:
            batch_results = algorithm.evaluate(batch)
            epoch_y_true.append(detach_and_clone(batch_results['y_true']))
            y_pred = detach_and_clone(batch_results['y_pred'])
            if config.process_outputs_function is not None:
                y_pred = process_outputs_functions[config.process_outputs_function](y_pred)
            epoch_y_pred.append(y_pred)
            epoch_metadata.append(detach_and_clone(batch_results['metadata']))

        epoch_y_pred = collate_list(epoch_y_pred)
        epoch_y_true = collate_list(epoch_y_true)
        epoch_metadata = collate_list(epoch_metadata)

        results, results_str = dataset['dataset'].eval(
            epoch_y_pred,
            epoch_y_true,
            epoch_metadata)
       
        results['epoch'] = epoch
        dataset['eval_logger'].log(results)
        general_logger.write(f'Eval split {split} at epoch {epoch}:\n')
        general_logger.write(results_str)

        # Skip saving train preds, since the train loader generally shuffles the data
        if split != 'train':
            save_pred_if_needed(epoch_y_pred, dataset, epoch, config, is_best, force_save=True)


def log_results(algorithm, dataset, general_logger, epoch, batch_idx):
    if algorithm.has_log:
        log = algorithm.get_log()
        log['epoch'] = epoch
        log['batch'] = batch_idx
        dataset['algo_logger'].log(log)
        if dataset['verbose']:
            general_logger.write(algorithm.get_pretty_log_str())
        algorithm.reset_log()


def save_pred_if_needed(y_pred, dataset, epoch, config, is_best, force_save=False):
    if config.save_pred:
        prefix = get_pred_prefix(dataset, config)
        if force_save or (config.save_step is not None and (epoch + 1) % config.save_step == 0):
            save_pred(y_pred, prefix, f'epoch-{epoch}_pred')
        if (not force_save) and config.save_last:
            save_pred(y_pred, prefix, f'epoch-last_pred')
        if config.save_best and is_best:
            save_pred(y_pred, prefix, f'epoch-best_pred')


def save_model_if_needed(algorithm, dataset, epoch, config, is_best, best_val_metric):
    prefix = get_model_prefix(dataset, config)
    if config.save_step is not None and (epoch + 1) % config.save_step == 0:
        save_model(algorithm, epoch, best_val_metric, prefix, f'epoch-{epoch}_model.pth')
    if config.save_last:
        save_model(algorithm, epoch, best_val_metric, prefix, 'epoch-last_model.pth')
    if config.save_best and is_best:
        save_model(algorithm, epoch, best_val_metric, prefix, 'epoch-best_model.pth')